Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Neurobiol Dis ; 161: 105561, 2021 12.
Article in English | MEDLINE | ID: mdl-34780863

ABSTRACT

Coronavirus disease 19 (COVID-19) is a respiratory illness caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). COVID-19 pathogenesis causes vascular-mediated neurological disorders via elusive mechanisms. SARS-CoV-2 infects host cells via the binding of viral Spike (S) protein to transmembrane receptor, angiotensin-converting enzyme 2 (ACE2). Although brain pericytes were recently shown to abundantly express ACE2 at the neurovascular interface, their response to SARS-CoV-2 S protein is still to be elucidated. Using cell-based assays, we found that ACE2 expression in human brain vascular pericytes was increased upon S protein exposure. Pericytes exposed to S protein underwent profound phenotypic changes associated with an elongated and contracted morphology accompanied with an enhanced expression of contractile and myofibrogenic proteins, such as α-smooth muscle actin (α-SMA), fibronectin, collagen I, and neurogenic locus notch homolog protein-3 (NOTCH3). On the functional level, S protein exposure promoted the acquisition of calcium (Ca2+) signature of contractile ensheathing pericytes characterized by highly regular oscillatory Ca2+ fluctuations. Furthermore, S protein induced lipid peroxidation, oxidative and nitrosative stress in pericytes as well as triggered an immune reaction translated by activation of nuclear factor-kappa-B (NF-κB) signaling pathway, which was potentiated by hypoxia, a condition associated with vascular comorbidities that exacerbate COVID-19 pathogenesis. S protein exposure combined to hypoxia enhanced the production of pro-inflammatory cytokines involved in immune cell activation and trafficking, namely macrophage migration inhibitory factor (MIF). Using transgenic mice expressing the human ACE2 that recognizes S protein, we observed that the intranasal infection with SARS-CoV-2 rapidly induced hypoxic/ischemic-like pericyte reactivity in the brain of transgenic mice, accompanied with an increased vascular expression of ACE2. Moreover, we found that SARS-CoV-2 S protein accumulated in the intranasal cavity reached the brain of mice in which the nasal mucosa is deregulated. Collectively, these findings suggest that SARS-CoV-2 S protein impairs the vascular and immune regulatory functions of brain pericytes, which may account for vascular-mediated brain damage. Our study provides a better understanding for the mechanisms underlying cerebrovascular disorders in COVID-19, paving the way to develop new therapeutic interventions.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Brain/metabolism , COVID-19/metabolism , Hypoxia-Ischemia, Brain/metabolism , Hypoxia/metabolism , Inflammation/metabolism , Pericytes/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Actins/metabolism , Angiotensin-Converting Enzyme 2/drug effects , Angiotensin-Converting Enzyme 2/genetics , Animals , Brain/blood supply , COVID-19/physiopathology , Calcium Signaling , Collagen Type I/metabolism , Fibronectins/metabolism , Humans , Hypoxia-Ischemia, Brain/physiopathology , Lipid Peroxidation/drug effects , Lipid Peroxidation/genetics , Macrophage Migration-Inhibitory Factors/drug effects , Macrophage Migration-Inhibitory Factors/metabolism , Mice , Mice, Transgenic , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Myofibroblasts , NF-kappa B/drug effects , NF-kappa B/metabolism , Nasal Mucosa , Nitrosative Stress , Oxidative Stress , Pericytes/cytology , Pericytes/drug effects , Phenotype , Receptor, Notch3/metabolism , Receptors, Coronavirus/drug effects , Receptors, Coronavirus/genetics , Receptors, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/pharmacology
2.
Pharmacol Res ; 151: 104539, 2020 01.
Article in English | MEDLINE | ID: mdl-31707036

ABSTRACT

Aging represents an independent risk factor for the development of cardiovascular disease, and is associated with complex structural and functional alterations in the vasculature, such as endothelial dysfunction. Small- and intermediate-conductance, Ca2+-activated K+ channels (KCa2.3 and KCa3.1, respectively) are prominently expressed in the vascular endothelium, and pharmacological activators of these channels induce robust vasodilation upon acute exposure in isolated arteries and intact animals. However, the effects of prolonged in vivo administration of such compounds are unknown. In our study, we hypothesized that such treatment would ameliorate aging-related cardiovascular deficits. Aged (∼18 months) male Sprague Dawley rats were treated daily with either vehicle or the KCa channel activator SKA-31 (10 mg/kg, intraperitoneal injection; n = 6/group) for 8 weeks, followed by echocardiography, arterial pressure myography, immune cell and plasma cytokine characterization, and tissue histology. Our results show that SKA-31 administration improved endothelium-dependent vasodilation, reduced agonist-induced vascular contractility, and prevented the aging-associated declines in cardiac ejection fraction, stroke volume and fractional shortening, and further improved the expression of endothelial KCa channels and associated cell signalling components to levels similar to those observed in young male rats (∼5 months at end of study). SKA-31 administration did not promote pro-inflammatory changes in either T cell populations or plasma cytokines/chemokines, and we observed no overt tissue histopathology in heart, kidney, aorta, brain, liver and spleen. SKA-31 treatment in young rats had little to no effect on vascular reactivity, select protein expression, tissue histology, plasma cytokines/chemokines or immune cell properties. Collectively, these data demonstrate that administration of the KCa channel activator SKA-31 improved aging-related cardiovascular function, without adversely affecting the immune system or promoting tissue toxicity.


Subject(s)
Aging , Arterial Pressure/drug effects , Benzothiazoles/pharmacology , Heart/drug effects , Potassium Channels, Calcium-Activated/agonists , Aging/drug effects , Animals , Cells, Cultured , Heart/physiology , Male , Potassium Channels, Calcium-Activated/metabolism , Rats, Sprague-Dawley , Stroke Volume/drug effects , Vasodilation/drug effects
3.
Int J Mol Sci ; 20(14)2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31315169

ABSTRACT

Systemic hypertension is a major risk factor for the development of cardiovascular disease and is often associated with endothelial dysfunction. KCa2.3 and KCa3.1 channels are expressed in the vascular endothelium and contribute to stimulus-evoked vasodilation. We hypothesized that acute treatment with SKA-31, a selective activator of KCa2.x and KCa3.1 channels, would improve endothelium-dependent vasodilation and transiently lower mean arterial pressure (MAP) in male, spontaneously hypertensive rats (SHRs). Isolated vascular preparations exhibited impaired vasodilation in response to bradykinin (i.e., endothelial dysfunction) compared with Wistar controls, which was associated with decreased bradykinin receptor expression in mesenteric arteries. In contrast, similar levels of endothelial KCa channel expression were observed, and SKA-31 evoked vasodilation was comparable in vascular preparations from both strains. Addition of a low concentration of SKA-31 (i.e., 0.2-0.3 µM) failed to augment bradykinin-induced vasodilation in arteries from SHRs. However, responses to acetylcholine were enhanced. Surprisingly, acute bolus administration of SKA-31 in vivo (30 mg/kg, i.p. injection) modestly elevated MAP compared with vehicle injection. In summary, pharmacological targeting of endothelial KCa channels in SHRs did not readily reverse endothelial dysfunction in situ, or lower MAP in vivo. SHRs thus appear to be less responsive to endothelial KCa channel activators, which may be related to their vascular pathology.


Subject(s)
Endothelium, Vascular/drug effects , Hypertension/drug therapy , Intermediate-Conductance Calcium-Activated Potassium Channels/agonists , Acetylcholine/pharmacology , Animals , Benzothiazoles/pharmacology , Benzothiazoles/therapeutic use , Blood Pressure , Bradykinin/pharmacology , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Hypertension/physiopathology , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Male , Rats , Rats, Inbred SHR , Rats, Wistar , Receptors, Bradykinin/genetics , Receptors, Bradykinin/metabolism , Vasodilation
4.
Eur J Pharmacol ; 831: 60-67, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29753043

ABSTRACT

It is now well recognized that endothelial KCa2.3 and KCa3.1 channel activities contribute to dilation of resistance arteries via endothelium-mediated hyperpolarization and vascular smooth muscle relaxation. In this study, we have investigated the functional effect of the KCa channel activator SKA-31 in third order rat mesenteric arteries using arterial pressure myography. Isolated arteries were cannulated, pressurized intraluminally to 70 mmHg at 36 °C and then constricted with 1 µM phenylephrine. Acute bath exposure to SKA-31 evoked a robust and reversible inhibition of developed tone (IC50 = 0.22 µM). The vasodilatory effects of SKA-31 and acetylcholine were blunted in the presence of KCa2.3 and KCa3.1 channel antagonists, and were largely prevented following endothelial denudation. Western blot and q-PCR analyses of isolated mesenteric arteries revealed KCa2.3 and KCa3.1 channel expression at the protein and mRNA levels, respectively. Penitrem-A, an inhibitor of KCa1.1 channels, decreased vasodilatory responses to acetylcholine, sodium nitroprusside and NS-1619, but had little effect on SKA-31. Similarly, bath exposure to the eNOS inhibitor L-NAME did not alter SKA-31 and acetylcholine-mediated vasodilation. Collectively, these data highlight the major cellular mechanisms by which the endothelial KCa channel activator SKA-31 inhibits agonist-evoked vasoconstriction in rat small mesenteric arteries.


Subject(s)
Benzothiazoles/pharmacology , Intermediate-Conductance Calcium-Activated Potassium Channels/agonists , Mesenteric Arteries/drug effects , Small-Conductance Calcium-Activated Potassium Channels/agonists , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Animals , Dose-Response Relationship, Drug , In Vitro Techniques , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Male , Mesenteric Arteries/metabolism , Myography , Rats, Sprague-Dawley , Signal Transduction/drug effects , Small-Conductance Calcium-Activated Potassium Channels/genetics , Small-Conductance Calcium-Activated Potassium Channels/metabolism
5.
Channels (Austin) ; 12(1): 126-136, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29577810

ABSTRACT

Endothelial small and intermediate-conductance, Ca2+-activated K+ channels (KCa2.3 and KCa3.1, respectively) play an important role in the regulation of vascular function and systemic blood pressure. Growing evidence indicates that they are intimately involved in agonist-evoked vasodilation of small resistance arteries throughout the circulation. Small molecule activators of KCa2.x and 3.1 channels, such as SKA-31, can acutely inhibit myogenic tone in isolated resistance arteries, induce effective vasodilation in intact vascular beds, such as the coronary circulation, and acutely decrease systemic blood pressure in vivo. The blood pressure-lowering effect of SKA-31, and early indications of improvement in endothelial dysfunction suggest that endothelial KCa channel activators could eventually be developed into a new class of endothelial targeted agents to combat hypertension or atherosclerosis. This review summarises recent insights into the activation of endothelial Ca2+ activated K+ channels in various vascular beds, and how tools, such as SKA-31, may be beneficial in disease-related conditions.


Subject(s)
Benzothiazoles/pharmacology , Cardiovascular System/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Potassium Channels, Calcium-Activated/antagonists & inhibitors , Animals , Cardiovascular System/metabolism , Humans , Potassium Channels, Calcium-Activated/metabolism
6.
Crit Rev Clin Lab Sci ; 54(7-8): 458-470, 2017.
Article in English | MEDLINE | ID: mdl-29084470

ABSTRACT

As the primary interface between the blood and various tissues of the body, the vascular endothelium exhibits a diverse range of roles and activities, all of which contribute to the overall health and function of the cardiovascular system. In this focused review, we discuss several key aspects of endothelial function, how this may be compromised and subsequent consequences. Specifically, we examine the dynamic regulation of arterial contractility and distribution of blood flow through the generation of chemical and electrical signaling events that impinge upon vascular smooth muscle. The endothelium can generate a diverse range of vasoactive compounds and signals, most of which act locally to adjust blood flow in a dynamic fashion to match tissue metabolism. Disruption of these vascular signaling processes (e.g. reduced nitric oxide bioavailability) is typically referred to as endothelial dysfunction, which is a recognized risk factor for cardiovascular disease in patients and occurs early in the development and progression of hypertension, atherosclerosis and tissue ischemia. Endothelial dysfunction is also associated with type-2 Diabetes and aging and increased mechanistic knowledge of the cellular changes contributing to these effects may provide important clues for interventional strategies. The endothelium also serves as the initial site of interaction for immune cells entering tissues in response to damage and acts to facilitate the actions of both the innate and acquired immune systems to interact with the vascular wall. In addition to representing the main cell type responsible for the formation of new blood vessels (i.e. angiogenesis) within the vasculature, the endothelium is also emerging as a source of extracellular vesicle or microparticles for the transport of signaling molecules and other cellular materials to nearby, or remote, sites in the body. The characteristics of released microparticles appear to change with the functional status of the endothelium; thus, these microparticles may represent novel biomarkers of endothelial health and more serious cardiovascular disease.


Subject(s)
Endothelium, Vascular , Animals , Cardiovascular Agents , Endothelium, Vascular/immunology , Endothelium, Vascular/physiology , Endothelium, Vascular/physiopathology , Humans , Mice , Nitric Oxide/metabolism , Rats , Vasoconstriction/physiology , Vasodilation/physiology
7.
PLoS One ; 11(12): e0167058, 2016.
Article in English | MEDLINE | ID: mdl-27935998

ABSTRACT

Inflammation is a major burden in respiratory diseases, resulting in airway hyperresponsiveness. Our hypothesis is that resolution of inflammation may represent a long-term solution in preventing human bronchial dysfunctions. The aim of the present study was to assess the anti-inflammatory effects of RvD2, a member of the D-series resolving family, with concomitant effects on ASM mechanical reactivity. The role and mode of action of RvD2 were assessed in an in vitro model of human bronchi under pro-inflammatory conditions, induced either by 1 µM LTD4 or 10 ng/ml TNF-α pre-treatment for 48h. TNF-α and LTD4 both induced hyperreactivity in response to pharmacological stimuli. Enhanced 5-Lipoxygenase (5-LOX) and cysteinyl leukotriene receptor 1 (CysLTR1) detection was documented in LTD4 or TNF-α pre-treated human bronchi when compared to control (untreated) human bronchi. In contrast, RvD2 treatments reversed 5-LOX/ß-actin and CysLTR1/ß-actin ratios and decreased the phosphorylation levels of AP-1 subunits (c-Fos, c-Jun) and p38-MAP kinase, while increasing the detection of the ALX/FPR2 receptor. Moreover, various pharmacological agents revealed the blunting effects of RvD2 on LTD4 or TNF-α induced hyper-responsiveness. Combined treatment with 300 nM RvD2 and 1 µM WRW4 (an ALX/FPR2 receptor inhibitor) blunted the pro-resolving and broncho-modulatory effects of RvD2. The present data provide new evidence regarding the role of RvD2 in a human model of airway inflammation and hyperrresponsiveness.


Subject(s)
Bronchi/drug effects , Docosahexaenoic Acids/pharmacology , Leukotriene D4/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Actins/metabolism , Arachidonate 5-Lipoxygenase/metabolism , Blotting, Western , Bronchi/metabolism , Bronchi/physiopathology , Bronchoconstriction/drug effects , Humans , Inflammation/metabolism , Inflammation/prevention & control , Phosphorylation/drug effects , Receptors, Leukotriene/metabolism , Tissue Culture Techniques , Transcription Factor AP-1/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
8.
Eur J Pharmacol ; 792: 70-77, 2016 Dec 05.
Article in English | MEDLINE | ID: mdl-27818127

ABSTRACT

Newly-synthesized, eicosapentaenoic acid monoacylglyceride (MAG-EPA), docosahexaenoic acid monoacylglyceride (MAG-DHA) and docosapentaenoic acid monoacylglyceride (MAG-DPA) have been demonstrated to display beneficial effects in several disorders including chronic airway inflammatory diseases, pulmonary hypertension, rheumatoid arthritis, and lung and colorectal adenocarcinoma. Recent evidence reveals that omega-3 polyunsaturated fatty acid (n-3 PUFA) precursors provide a window to explore the pathobiology of inflammatory disease as well as structural templates for the design of novel pro-resolving precursors that are well absorbed by the gastrointestinal (GI) tract and metabolized into bioactive metabolites. These metabolites are found in blood circulation and tissues thereby mediating numerous immuno-modulatory effects through the activation of specific receptors. Bioactive metabolites regulate cell membrane functions, lipid signaling and gene expressions encoding for enzymes responsible for lipid storage and fatty acid metabolism. This review highlights recent experimental findings regarding n-3 PUFA monoacylglyceride research, as well as the pharmacological and medicinal relevance of these stereospecific derivatives in the resolution of chronic inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Discovery/methods , Fatty Acids, Omega-3/chemistry , Fatty Acids, Omega-3/pharmacology , Monoglycerides/chemistry , Animals , Cell Proliferation/drug effects , Humans
9.
Pharmacol Res Perspect ; 4(6): e00263, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28097001

ABSTRACT

Bronchial inflammation contributes to a sustained elevation of airway hyperresponsiveness (AHR) in asthma. Conversely, omega-3 fatty acid derivatives have been shown to resolve inflammation in various tissues. Thus, the effects of docosapentaenoic acid monoacylglyceride (MAG-DPA) were assessed on inflammatory markers and reactivity of human distal bronchi as well as in a cultured model of guinea pig tracheal rings. Human bronchi were dissected and cultured for 48 h with 10 ng/mL TNF-α or IL-13. Guinea pig tracheas were maintained in organ culture for 72 h which was previously shown to trigger spontaneous AHR. All tissues were treated with increasing concentrations of MAG-DPA (0.1, 0.3, and 1 µmol/L). Pharmacomechanical reactivity, Ca2+ sensitivity, and western blot analysis for specific phosphoproteins and transcription factors were performed to assess the effects of both cytokines, alone or in combination with MAG-DPA, on human and guinea pig airway preparations. Although 0.1 µmol/L MAG-DPA did not significantly reduce inflammatory biomarkers, the higher concentrations of MAG-DPA (0.3 and 1 µmol/L) blunted the activation of the TNF-α/NF κB pathway and abolished COX-2 expression in human and guinea pig tissues. Moreover, 0.3 and 1 µmol/L MAG-DPA consistently decreased the Ca2+ sensitivity and pharmacological reactivity of cultured bronchial explants. Furthermore, in human bronchi, IL-13-stimulated phosphorylation of CPI-17 was reversed by 1 µmol/L MAG-DPA. This effect was further amplified in the presence of 100 µmol/L aspirin. MAG-DPA mediates antiphlogistic effects by increasing the resolution of inflammation, while resetting Ca2+ sensitivity and contractile reactivity.

10.
Prostaglandins Other Lipid Mediat ; 121(Pt B): 145-54, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26159746

ABSTRACT

The aim of this study was to investigate the effects of resolvin D1 (RvD1), as well as the combined treatment of docosahexaenoic acid monoglyceride (MAG-DHA) and acetylsalicylic acid (ASA), on the resolution of inflammation markers and Ca(2+) sensitivity in IL-13-pretreated human bronchi (HB). Tension measurements performed with 300 nM RvD1 largely abolished (50%) the over-reactivity triggered by 10 ng/ml IL-13 pretreatment and reversed hyper Ca(2+) sensitivity. Addition of 300 nM 17(S)-HpDoHE, the metabolic intermediate between DHA and RvD1, displayed similar effects. In the presence of 100 µM ASA (a COX inhibitor), the inhibitory effect of 1 µM MAG-DHA on muscarinic tone was further amplified, but not in the presence of Ibuprofen. Western blot analysis revealed that the combined treatment of MAG-DHA and ASA upregulated GPR-32 expression and downregulated cytosolic TNFα detection, hence preventing IκBα degradation and p65-NFκB phosphorylation. The Ca(2+) sensitivity of HB was also quantified on ß-escin permeabilized preparations. The presence of ASA potentiated the inhibitory effects of MAG-DHA in reducing the Ca(2+) hypersensitivity triggered by IL-13 by decreasing the phosphorylation levels of the PKC-potentiated inhibitor protein-17 regulatory protein (CPI-17). In summary, MAG-DHA combined with ASA, as well as exogenously added RvD1, may represent valuable assets against critical AHR disorder.


Subject(s)
Bronchi/drug effects , Bronchitis/drug therapy , Bronchodilator Agents/pharmacology , Calcium Signaling/drug effects , Cyclooxygenase Inhibitors/pharmacology , Docosahexaenoic Acids/metabolism , Monoglycerides/pharmacology , Airway Resistance/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Aspirin/pharmacology , Bronchi/immunology , Bronchi/metabolism , Bronchitis/immunology , Bronchitis/metabolism , Bronchodilator Agents/agonists , Drug Synergism , Fatty Acids, Omega-3/antagonists & inhibitors , Fatty Acids, Omega-3/metabolism , Humans , I-kappa B Kinase/chemistry , I-kappa B Kinase/metabolism , In Vitro Techniques , Interleukin-13/antagonists & inhibitors , Interleukin-13/metabolism , Intracellular Signaling Peptides and Proteins , Monoglycerides/agonists , Muscle Proteins , Phosphoprotein Phosphatases/antagonists & inhibitors , Phosphoprotein Phosphatases/metabolism , Phosphorylation/drug effects , Protein Processing, Post-Translational/drug effects , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Transcription Factor RelA/antagonists & inhibitors , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
11.
Pflugers Arch ; 467(7): 1591-1605, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25113382

ABSTRACT

This study was aimed to investigate the role of eicosapentaenoic acid monoacylglyceride (MAG-EPA) and 17,18-epoxyeicosatetraenoic acid (17,18-EpETE) on the regulation of contractile reactivity and nuclear protein expression in 72-h-cultured and TNF-α-treated guinea pig tracheal rings. Tension measurements performed on native tissues demonstrated that the cytochrome P-450 epoxygenase (CYP450)-dependent EPA metabolite, 17,18-EpETE, displayed a higher potency than MAG-EPA in inhibiting U-46619-induced tone. Calphostin C (a PKC inhibitor), whether in association or not with MAG-EPA or 17,18-EpETE, had no further effect, while 17,18-EpETE and Y-27632 (a Rho kinase inhibitor) yielded additive effects. Of note, MAG-EPA and 17,18-EpETE pre-treatments normalized the contractile responses to broncho-constrictive agents in 72-h-cultured trachea. The enhanced expression of TNF-α, P-p65-nuclear factor kappaB (NF)-κB, c-fos and c-Jun in 72-h-cultured tissues likely contributed to the hyperresponsiveness. ß-Escin-permeabilized preparations demonstrated that 17,18-EpETE abolished Ca(2+) hypersensitivity, suggesting a blunting of PKC and/or Rho kinase activation. Lastly, activation of NF-κB and activating protein-1 (AP-1) signalling by exogenous TNF-α markedly increased the contractile response to MCh, through an increase in 17-kDa PKC-potentiated inhibitory protein of PP1 (CPI-17) phosphorylation and IκBα degradation. Dual incubation of 17,18-EpETE with calphostin C or Y-27632 induced cumulative inhibitory effects on MCh responses in TNF-α-incubated tracheal rings. 17,18-EpETE also reduced the detection level of P-p65-NF-κB and AP-1 subunits. The present data provide evidence that MAG-EPA, through its bioactive metabolite, represents a prospective pharmacological target in respiratory diseases.


Subject(s)
Arachidonic Acids/pharmacology , Bronchoconstriction , Cytoplasm/metabolism , Monoglycerides/pharmacology , Muscle, Smooth/drug effects , Signal Transduction , Trachea/physiology , Animals , Bronchoconstrictor Agents/pharmacology , Calcium/metabolism , Female , Guinea Pigs , JNK Mitogen-Activated Protein Kinases/metabolism , Male , Muscle, Smooth/metabolism , Muscle, Smooth/physiology , NF-kappa B/metabolism , Phosphoprotein Phosphatases/metabolism , Trachea/drug effects , Trachea/metabolism , Tumor Necrosis Factor-alpha/metabolism , rho-Associated Kinases/antagonists & inhibitors
12.
Am J Respir Crit Care Med ; 190(8): 886-97, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25162465

ABSTRACT

RATIONALE: Severe asthma is characterized by airway inflammatory responses associated with aberrant metabolism of arachidonic acid. Lipoxins (LX) are arachidonate-derived pro-resolving mediators that are decreased in severe asthma, yet mechanisms for defective LX biosynthesis and a means to increase LXs in severe asthma remain to be established. OBJECTIVES: To determine if oxidative stress and soluble epoxide hydrolase (sEH) activity are linked to decreased LX biosynthesis in severe asthma. METHODS: Aliquots of blood, sputum, and bronchoalveolar lavage fluid were obtained from asthma subjects for mediator determination. Select samples were exposed to t-butyl-hydroperoxide or sEH inhibitor (sEHI) before activation. Peripheral blood leukocyte-platelet aggregates were monitored by flow cytometry, and bronchial contraction was determined with cytokine-treated human lung sections. MEASUREMENTS AND MAIN RESULTS: 8-Isoprostane levels in sputum supernatants were inversely related to LXA4 in severe asthma (r = -0.55; P = 0.03) and t-butyl-hydroperoxide decreased LXA4 and 15-epi-LXA4 biosynthesis by peripheral blood leukocytes. LXA4 and 15-epi-LXA4 levels were inversely related to sEH activity in sputum supernatants and sEHIs significantly increased 14,15-epoxy-eicosatrienoic acid and 15-epi-LXA4 generation by severe asthma whole blood and bronchoalveolar lavage fluid cells. The abundance of peripheral blood leukocyte-platelet aggregates was related to asthma severity. In a concentration-dependent manner, LXs significantly inhibited platelet-activating factor-induced increases in leukocyte-platelet aggregates (70.8% inhibition [LXA4 100 nM], 78.3% inhibition [15-epi-LXA4 100 nM]) and 15-epi-LXA4 markedly inhibited tumor necrosis factor-α-induced increases in bronchial contraction. CONCLUSIONS: LX levels were decreased by oxidative stress and sEH activity. Inhibitors of sEH increased LXs that mediated antiphlogistic actions, suggesting a new therapeutic approach for severe asthma. Clinical trial registered with www.clinicaltrials.gov (NCT 00595114).


Subject(s)
Asthma/metabolism , Epoxide Hydrolases/metabolism , Lipoxins/metabolism , Oxidative Stress , Adult , Biomarkers/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Case-Control Studies , Epoxide Hydrolases/antagonists & inhibitors , Female , Flow Cytometry , Humans , Male , Middle Aged , Severity of Illness Index , Sputum/chemistry , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...